behaviors: BensonImitationV3: trainer_type: ppo hyperparameters: # Hyperparameters common to PPO and SAC batch_size: 50 buffer_size: 15000 learning_rate: 3.0e-4 learning_rate_schedule: linear # PPO-specific hyperparameters # Replaces the "PPO-specific hyperparameters" section above beta: 5.0e-2 epsilon: 0.1 lambd: 0.95 num_epoch: 3 # Configuration of the neural network (common to PPO/SAC) network_settings: vis_encoder_type: simple normalize: false hidden_units: 128 num_layers: 2 # Trainer configurations common to all trainers max_steps: 2.4e5 time_horizon: 64 summary_freq: 9000 keep_checkpoints: 5 checkpoint_interval: 100000 threaded: true init_path: null # behavior cloning behavioral_cloning: demo_path: 'c:\Users\noahk\Documents\Unity projects\Racesm\Assets\Demonstrations\BensonV3M.demo' strength: 0.5 # steps: 150000 # batch_size: 512 # num_epoch: 3 # samples_per_update: 0 reward_signals: # environment reward (default) extrinsic: strength: 1.0 gamma: 0.99 # curiosity module curiosity: strength: 0.02 gamma: 0.99 encoding_size: 256 learning_rate: 3.0e-4 # GAIL gail: strength: 0.5 # gamma: 0.99 # encoding_size: 128 demo_path: 'c:\Users\noahk\Documents\Unity projects\Racesm\Assets\Demonstrations\BensonV3M.demo' # learning_rate: 3.0e-4 # use_actions: false # use_vail: false